Neutrino beam experiments may give answers to Matter-Antimatter Asymmetry in the Universe

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
·@frostfractal·
0.000 HBD
Neutrino beam experiments may give answers to Matter-Antimatter Asymmetry in the Universe
<html>
<p><img src="http://www.symmetrymagazine.org/sites/default/files/styles/2015_hero/public/images/standard/Kamiokande.jpg?itok=FuxVXuIN" width="1600" height="900"/></p>
<p><em>(Graphic 1: Each of these bulbs is a photodetector!)</em></p>
<p>Recent results from the <strong>T2K experiment</strong> with neutrinos and antineutrinos may explain why matter dominates over antimatter in the formation of the universe.</p>
<p><img src="https://idw-online.de/en/newsimage?id=291175&amp;size=screen" width="601" height="466"/></p>
<p><em>(Graphic 2: Each point here represents a photodetector that has detected light)</em></p>
<p>Neutrinos and anti-neutrinos are elusive particles, interacting with other particles only via the weak force and gravitational force.&nbsp;Yet, scientists at the T2K experiment have managed to find an asymmetry between matter and antimatter. In more technical terms, the asymmetry is found to a <strong>2-sigma level</strong> - i.e. "confirmed to a 95% probability".&nbsp;</p>
<p>The asymmetry arises in <strong>neutrino oscillations</strong>. Neutrino oscillations is the phenomenon whereby electron-neutrinos will transform into muon-neutrinos/tau-neutrinos and vice versa over spacetime. For example, if we start out with an electron-neutrino, its state will vary following a pattern like the graph below:&nbsp;</p>
<p><img src="https://upload.wikimedia.org/wikipedia/en/thumb/7/73/Oscillations_electron_long.svg/800px-Oscillations_electron_long.svg.png" width="800" height="539"/></p>
<p><em>(Graphic 3: Graph of electron neutrino oscillation)</em></p>
<p>Neutrino oscillation occurs as their <strong>weak eigenstate is not equal to their mass eigenstate</strong>. Thus a neutrino produced under some weak eigenstate can be measured as a different weak eigenstate after travelling some distance as a mass eigenstate. This mixing is described by the <strong>PMNS matrix</strong>. &nbsp;The T2K experiment finds that the neutrino oscillation rate and probability differs for neutrinos and anti-neutrinos. It's a small effect, but nonetheless 2-sigma above the noise level.</p>
<p><img src="https://steemitimages.com/DQmbmCccP58wAfnerqYnwVbn6PZWdmd4jbnnCKjNyh8Hktj/image.png" width="339" height="99"/></p>
<h3>References</h3>
<ol>
  <li>Abe, K., Amey, J., Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., ... &amp; Barr, G. (2017). Combined analysis of neutrino and antineutrino oscillations at T2K. Physical Review Letters, 118(15), 151801.&nbsp;</li>
  <li>Abe, K., Amey, J., Andreopoulos, C., Antonova, M., Aoki, S., Ariga, A., ... &amp; Barker, G. J. (2017). Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5× 1 0 21 protons on target. Physical Review D, 96(1), 011102.&nbsp;</li>
  <li>Abe, K., Abgrall, N., Aihara, H., Akiri, T., Albert, J. B., Andreopoulos, C., ... &amp; Autiero, D. (2013). T2K neutrino flux prediction. Physical Review D, 87(1), 012001.</li>
  <li>Maki, Z., Nakagawa, M., &amp; Sakata, S. (1962). Remarks on the unified model of elementary particles. <em>Progress of Theoretical Physics</em>, <em>28</em>(5), 870-880.</li>
  <li>Pontecorvo, B. (1958). INVERSE BETA PROCESSES AND NONCONSERVATION OF LEPTON CHARGE. <em>Zhur. Eksptl'. i Teoret. Fiz.</em>, <em>34</em>.</li>
  <li>en.wikipedia.org/wiki/Neutrino_oscillation&nbsp;&nbsp;</li>
</ol>
</html>
👍 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,