[Math Talk #4] Pigeonhole Principle and Applications [2]
math·@mathsolver·
0.000 HBD[Math Talk #4] Pigeonhole Principle and Applications [2]
# Pigeonhole Principle and Miscellaneous Applications (2)
**[1]**
<center> <img src = "https://i.imgsafe.org/6d/6dbb3ad7b5.gif" height = "300" width = "400"/> </center>
Continuing our discussion of pigeonhole principle from [Math Talk #3](https://steemit.com/math/@mathsolver/math-talk-3-pigeonhole-principle-and-its-usage), I will post some miscellaneous applications of Pigeonhole principle.
## 1. Partitioning the subset of Natural numbers
### 1-1. Concerning the set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>
**Problem 1.** - **[2]**
Given any <img src="http://latex.codecogs.com/gif.latex?n+1" title="n+1" align = "center"/> integers among <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>, show that two of them are relatively prime. Show that the result is false if we choose <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> integers.
**Solution 1.**
Partition the set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/> into <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> subsets of the form
<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2&space;\right\},&space;\left\{&space;3,&space;4&space;\right\},&space;...,&space;\left\{&space;2n-1,&space;2n&space;\right\}" title="\left\{ 1, 2 \right\}, \left\{ 3, 4 \right\}, ..., \left\{ 2n-1, 2n \right\}" /> </center>
Then by Pigeonhole principle, choosing <img src="http://latex.codecogs.com/gif.latex?n+1" title="n+1" align = "center"/> integers forces us to pick two (i.e. all ) elements in single partition. Since consecutive integers are relatively prime, there is at least one pair of integers which are relatively prime.
If the number reduces to <img src="http://latex.codecogs.com/gif.latex?n" title="n" />, then clearly choosing <img src="http://latex.codecogs.com/gif.latex?\left\{&space;2,&space;4,&space;6,&space;...,&space;2n&space;\right\}" title="\left\{ 2, 4, 6, ..., 2n \right\}" align = "center"/> (the set of even numbers) will be the counterexample.
---
**Problem 2.** - **[3]**
Given any <img src="http://latex.codecogs.com/gif.latex?n+1" title="n+1" align = "center"/> integers among <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>, show that one of them is divisible by another. Show that the result is false if we choose <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> integers.
**Solution 2.**
By prime factorizing theorem for positive integers, every positive integers can be expressed as
<center> <img src="http://latex.codecogs.com/gif.latex?k&space;=&space;2^m&space;\times&space;\ell" title="k = 2^m \times \ell" /> </center>
where <img src="http://latex.codecogs.com/gif.latex?m&space;\geq&space;0" title="m \geq 0" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" /> is odd. First, make <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> pigeonholes as follows.
<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1&space;\right\},&space;\left\{&space;3&space;\right\},&space;\left\{&space;5&space;\right\},&space;...,&space;\left\{&space;2n-3&space;\right\},&space;\left\{&space;2n-1&space;\right\}" title="\left\{ 1 \right\}, \left\{ 3 \right\}, \left\{ 5 \right\}, ..., \left\{ 2n-3 \right\}, \left\{ 2n-1 \right\}" /> </center>
In other words, every odd number less than <img src="http://latex.codecogs.com/gif.latex?2n" title="2n" /> is partitioned into singleton sets. Now,
<center> <img src="http://latex.codecogs.com/gif.latex?k&space;=&space;2^{m}&space;\times&space;\ell&space;\leq&space;2n&space;\implies&space;\ell&space;\leq&space;2n" title="k = 2^{m} \times \ell \leq 2n \implies \ell \leq 2n" /> </center>
since <img src="http://latex.codecogs.com/gif.latex?m&space;\geq&space;0" title="m \geq 0" align = "center"/> . Since there are <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> distinct odd numbers, among <img src="http://latex.codecogs.com/gif.latex?n+1" title="n+1" align = "center"/> numbers, there should exist two <img src="http://latex.codecogs.com/gif.latex?k_1,&space;k_2" title="k_1, k_2" align = "center"/> having same <img src="http://latex.codecogs.com/gif.latex?\ell" title="\ell" align = "center"/> by pigeonhole principle. Then we can express as
<center> <img src="http://latex.codecogs.com/gif.latex?k_1&space;=&space;2^{m_1}&space;\times&space;\ell,\&space;k_2&space;=&space;2^{m_2}&space;\times&space;\ell&space;\implies&space;k_1&space;|&space;k_2&space;\text{&space;or&space;}&space;k_2&space;|&space;k_1" title="k_1 = 2^{m_1} \times \ell,\ k_2 = 2^{m_2} \times \ell \implies k_1 | k_2 \text{ or } k_2 | k_1" /> </center>
depending on the magnitude of <img src="http://latex.codecogs.com/gif.latex?m_1,&space;m_2" title="m_1, m_2" align = "center" />.
If the number reduces to <img src="http://latex.codecogs.com/gif.latex?n" title="n" />, then clearly the set of all odd numbers <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;3,&space;5,...,&space;2n-1&space;\right\}" title="\left\{ 1, 3, 5,..., 2n-1 \right\}" align = "center"/> would be the counterexample.
---
**Problem 3.** - **[4]**
Let <img src="http://latex.codecogs.com/gif.latex?a_1&space;<&space;a_2&space;<&space;...&space;<&space;a_n" title="a_1 < a_2 < ... < a_n" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?b_1&space;>&space;b_2&space;>&space;...&space;>&space;b_n" title="b_1 > b_2 > ... > b_n" align = "center"/> where <img src="http://latex.codecogs.com/gif.latex?a_1,...,a_n,&space;b_1,...,b_n" title="a_1,...,a_n, b_1,...,b_n" align = "center"/> are all distinct elements in <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., 2n \right\}" align = "center"/>. Prove that
<center> <img src="http://latex.codecogs.com/gif.latex?\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;=&space;n^2" title="\sum_{i=1}^{n} |a_i - b_i| = n^2" /> </center>
**Solution 3.**
First, partition the whole set into two disjoint subsets
<center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;n&space;\right\},&space;\left\{&space;n+1,&space;n+2,&space;...,&space;2n&space;\right\}" title="\left\{ 1, 2, ..., n \right\}, \left\{ n+1, n+2, ..., 2n \right\}" /> </center>
Now fix index <img src="http://latex.codecogs.com/gif.latex?i" title="i" /> , and consider <img src="http://latex.codecogs.com/gif.latex?a_i,&space;b_i" title="a_i, b_i" align = "center"/> . <img src="http://latex.codecogs.com/gif.latex?a_1,&space;a_2,&space;...,&space;a_{i-1},&space;b_{i+1},&space;...,&space;b_n" title="a_1, a_2, ..., a_{i-1}, b_{i+1}, ..., b_n" align = "center"/> are all smaller than <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center"/> . So at least
<center> <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)&space;>&space;(i&space;-&space;1)&space;+&space;(n&space;-&space;i)&space;+&space;1&space;=&space;n&space;-&space;1&space;+&space;1&space;=&space;n&space;\implies&space;\max(a_i,&space;b_i)&space;\geq&space;n&space;+&space;1" title="\max(a_i, b_i) > (i - 1) + (n - i) + 1 = n - 1 + 1 = n \implies \max(a_i, b_i) \geq n + 1" /> </center>
So <img src="http://latex.codecogs.com/gif.latex?\max(a_1,&space;b_1),&space;\max(a_2,&space;b_2),&space;...,&space;\max(a_n,&space;b_n)" title="\max(a_1, b_1), \max(a_2, b_2), ..., \max(a_n, b_n)" align = "center"/> are all elements of the latter set <img src="http://latex.codecogs.com/gif.latex?\left\{&space;n+1,&space;...,&space;2n&space;\right\}" title="\left\{ n+1, ..., 2n \right\}" align = "center" /> . Since
<center> <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)&space;=&space;\max(a_j,&space;b_j)&space;\implies&space;i&space;=&space;j" title="\max(a_i, b_i) = \max(a_j, b_j) \implies i = j" /> </center>
those <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> elements of the form <img src="http://latex.codecogs.com/gif.latex?\max(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center" /> are all distinct, so that by Pigeonhole principle, they occupy exactly one element in <img src="http://latex.codecogs.com/gif.latex?\left\{&space;n+1,&space;...,&space;2n&space;\right\}" title="\left\{ n+1, ..., 2n \right\}" align = "center" /> .
Since <img src="http://latex.codecogs.com/gif.latex?\min(a_i,&space;b_i)&space;<&space;\max(a_i,&space;b_i)" title="\min(a_i, b_i) < \max(a_i, b_i)" align = "center"/> and all <img src="http://latex.codecogs.com/gif.latex?n" title="n" /> elements of the form <img src="http://latex.codecogs.com/gif.latex?\min(a_i,&space;b_i)" title="\max(a_i, b_i)" align = "center" /> are distinct, by Pigeonhole principle, they occupy exactly one element in <img src="http://latex.codecogs.com/gif.latex?\left\{&space;1,&space;2,&space;...,&space;n&space;\right\}" title="\left\{ 1, 2, ..., n \right\}" align = "center"/>. So
<center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;\sum_{i=1}^{n}&space;|a_i&space;-&space;b_i|&space;&=&space;\sum_{i=1}^{n}&space;\left[&space;\max(a_i,&space;b_i)&space;-&space;\min(a_i,&space;b_i)&space;\right]&space;\\&space;&=&space;\sum_{i=1}^{n}&space;\max(a_i,&space;b_i)&space;-&space;\sum_{i=1}^{n}&space;\min(a_i,&space;b_i)&space;\\&space;&=&space;(n+1&space;+&space;n+2&space;+&space;...&space;+2n)&space;-&space;(1+2+...&space;n)&space;\\&space;&=&space;n^2&space;\end{align*}" title="\begin{align*} \sum_{i=1}^{n} |a_i - b_i| &= \sum_{i=1}^{n} \left[ \max(a_i, b_i) - \min(a_i, b_i) \right] \\ &= \sum_{i=1}^{n} \max(a_i, b_i) - \sum_{i=1}^{n} \min(a_i, b_i) \\ &= (n+1 + n+2 + ... +2n) - (1+2+... n) \\ &= n^2 \end{align*}" /> </center>
## 2. Erdös - Szerkes Theorem
The original theorem is as follows.
**Theorem.**
For given <img src="http://latex.codecogs.com/gif.latex?r,&space;s&space;\in&space;\mathbb{N}" title="r, s \in \mathbb{N}" align = "center"/> any sequence of distinct real numbers with length at least <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;+&space;1" title="(r-1)(s-1) + 1" align = "center"/> contains a **monotonically increasing** subsequence of length r **or** a **monotonically decreasing** subsequence of length s.
**Proof.** - **[5]**
First denote <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;+&space;1" title="(r-1)(s-1) + 1" align = "center"/> as <img src="http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_{(r-1)(s-1)+1}" title="n_1, n_2, ..., n_{(r-1)(s-1)+1}" align = "center"/> . Also for each <img src="http://latex.codecogs.com/gif.latex?n_i" title="n_i" align = "center"/>, we assign a pair <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)" title="(a_i, b_i)" align = "center"/> such that
<center> <img src="http://latex.codecogs.com/gif.latex?\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;\&space;n_i&space;\mapsto&space;(a_i,&space;b_i)\\&space;a_i:=&space;\text{length&space;of&space;longest&space;monotonically&space;increasing&space;subsequence&space;ending&space;in&space;}n_i\\&space;b_i:=&space;\text{length&space;of&space;longest&space;monotonically&space;decreasing&space;subsequence&space;ending&space;in&space;}n_i" title="\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ n_i \mapsto (a_i, b_i)\\ a_i:= \text{length of longest monotonically increasing subsequence ending in }n_i\\ b_i:= \text{length of longest monotonically decreasing subsequence ending in }n_i" /> </center>
Now we seek some properties of this pair. Since all numbers are distinct,
<center> <img src="http://latex.codecogs.com/gif.latex?i&space;<&space;j\&space;\land&space;n_i&space;\leq&space;n_j&space;\implies&space;a_i&space;<&space;a_j" title="i < j\ \land n_i \leq n_j \implies a_i < a_j" /> </center>
as well as
<center> <img src="http://latex.codecogs.com/gif.latex?i&space;<&space;j\&space;\land&space;n_i&space;\geq&space;n_j&space;\implies&space;b_i&space;>&space;b_j" title="i < j\ \land n_i \geq n_j \implies b_i > b_j" /> </center>
So, <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)&space;\neq&space;(a_j,&space;b_j)" title="(a_i, b_i) \neq (a_j, b_j)" align = "center"/> for any case.
If number of possible values of <img src="http://latex.codecogs.com/gif.latex?a_i" title="a_i" align = "center"/> is less than <img src="http://latex.codecogs.com/gif.latex?r" title="r" /> and number of possible values of <img src="http://latex.codecogs.com/gif.latex?b_i" title="b_i" align = "center"/> is less than <img src="http://latex.codecogs.com/gif.latex?s" title="s" />, then in total, there will be at most <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)" title="rs" align = "center"/> number of <img src="http://latex.codecogs.com/gif.latex?(a_i,&space;b_i)" title="(a_i, b_i)" align = "center"/> pairs. This contradicts to the fact that all pairs are distinct (which in total <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;+&space;1" title="(r-1)(s-1) + 1" align = "center"/>), so by **Pigeonhole principle**, either
<center> <img src="http://latex.codecogs.com/gif.latex?a_i&space;\geq&space;r" title="a_i \geq r" /> </center>
or
<center> <img src="http://latex.codecogs.com/gif.latex?b_i&space;\geq&space;s" title="b_i \geq s" /> </center>
for some index <img src="http://latex.codecogs.com/gif.latex?i" title="i" />.
## 2-1. Visualization of Theorem
Let's say we have <img src="http://latex.codecogs.com/gif.latex?M=(r-1)(s-1)&space;+&space;1" title="(r-1)(s-1) + 1" align = "center"/> distinct real numbers,
<center> <img src="http://latex.codecogs.com/gif.latex?n_1,&space;n_2,&space;...,&space;n_M" title="n_1, n_2, ..., n_M" /> </center>
Now in 2D <img src="http://latex.codecogs.com/gif.latex?\mathbb{R}^2" title="\mathbb{R}^2" /> plane, math each number <img src="http://latex.codecogs.com/gif.latex?n_i" title="n_i" align = "center"/> to the point <img src="http://latex.codecogs.com/gif.latex?n_i&space;\mapsto&space;(i,&space;n_i)" title="n_i \mapsto (i, n_i)" align = "center"/> . Then we can always find a polygonal path either
1. length <img src="http://latex.codecogs.com/gif.latex?r-1" title="r-1" /> and of positive slope. (Going upward right)
2. length <img src="http://latex.codecogs.com/gif.latex?s-1" title="s-1" /> and of negative slope. (Going downaward right)
### Example
The case when <img src="http://latex.codecogs.com/gif.latex?r&space;=&space;s&space;=&space;5" title="r = s = 9" /> . Randomly generate <img src="http://latex.codecogs.com/gif.latex?(r-1)(s-1)&space;+&space;1&space;=&space;17" title="(r-1)(s-1) + 1 = 37" align = "center"/> points.
**[6]**
<center >
<img src = "https://i.imgsafe.org/6d/6da41b2732.png" /> </center>
We can see that it consists of 5 <img src="http://latex.codecogs.com/gif.latex?=r" title="=r" /> points, which is of positive slope polygon path.
## 3. Conclusion
Pigeonhole Principle can be a powerful tool in discrete mathematics and in any field concerning some counting.
## 4. Citations
[1] http://cpptruths.blogspot.com/2014/05/the-pigeonhole-principle-in-c.html (only image is used)
[2] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 7
[3] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 8
[4] http://web.archive.org/web/20120124185755/http://math.mit.edu/~rstan/a34/pigeon.pdf Problem 13
[5] Seidenberg, A. (1959), "A simple proof of a theorem of Erdős and Szekeres" (PDF), Journal of the London Mathematical Society, 34: 352, doi:10.1112/jlms/s1-34.3.352.
[6] https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Szekeres_theorem (only image is used)
---
**Solutions to the problems are made by myself. **👍 mathsolver, leggy23, hr1, council, msolver, steemitboard, bitcoingodperson, alexs1320, steemstem, kevinwong, lemouth, odic3o1, helo, mahdiyari, alexander.alexis, ludmila.kyriakou, fancybrothers, jpederson96, howo, esteemguy, joe.nobel, tanyaschutte, felixrodriguez, enzor, pratik27, tfcoates, eleonardo, egotheist, robotics101, tristan-muller, fejiro, sco, adetola, rharphelle, shoganaii, jesusjacr, jlmol7, mittymartz, terrylovejoy, olajidekehinde, real2josh, rionpistorius, heajin, kingabesh, josephace135, ajpacheco1610, flugschwein, lianaakobian, anyes2013, dedesuryani, cryptoitaly, effofex, count-antonio, de-stem, greatwarrior79, yann85, ari16, michaelwrites, temitayo-pelumi, synick, beautyinscience, artcreator, ibk-gabriel, purelyscience, mitaenda, drmoises, herbayomi, swapsteem, leftyobradovich, tombstone, mrwang, arconite, suesa, alexzicky, mountain.phil28, nurhayati, gordon92, monie, jaycem, doctor-cog-diss, biomimi, funster, schlunior, testomilian, allhailfish, yeaho, mblain, sharelovenothate, nako1337, capx, canhoch, lafona-miner, justtryme90, thevenusproject, borislavzlatanov, dna-polymerase, dna-ligase, dna-helicase, dna-primase, sliding-clamp, clamp-loader, dna-gyrase, rna-polymerase, ribosome, the-devil, foundation, lamouthe, himal, rachelsmantra, kerriknox, nitesh9, gra, rjbauer85, dna-replication, rockeynayak, curie, meerkat, awesomianist, jacalf, tantawi, aboutyourbiz, howtostartablog, cryptokrieg, zacherybinx, gambit.coin, phogyan, gabox, birgitt, kerry234, spectrums, esaia.mystic, speaklife, sneikder, bimijay, strings, randomwanderings, chimtivers96, jerscoguth, dashfit, heriafriadiaka, dyancuex, pacokam8, muliadi, vadimlasca, maxruebensal, smafey, marialefleitas, jesusj1, wandersells, sci-guy, kimaben, skycae, enjoyy, laritheghost, zorto, amirdesaingrafis, wrpx, atjehsteemit, bil.prag, ikeror, sethroot, lrsm13, dber, makrotheblack, nitego, ratticus, kofspades, onethousandwords, runningman, amavi, hasan086, evernew, rasamuel, cerventus, jayboss, aaronteng, debbietiyan, yuniraziati, jpmkikoy, the-doubled, phaazer1, chillingotter, niouton, wstanley226, misterakpan, anna-mi, clweeks, derekvonzarovich, peaceandwar, digitalpnut, sireh, operahoser, caitycat, vegan.niinja, wisata, hiddenblade, soundworks, carolynseymour, saintopic, jayna, indy8phish, paddygsound, gotgame, joendegz, anikekirsten, ivan-g, kendallron, tasjun, jembee, qberryfarms, hansmast, raymondspeaks, j3dy, toniesteem, moksamol, getrichordie, thatsweeneyguy, lotfiuser, g0nr0gue, shippou95, mustaphaaoufi, evolutionnow, sohailahmed, stahlberg, iamfo, didic, jonnyla08, bavi, etaletai, shookriya, onethousandpics, kyanzieuno, richardgreen, bitson, cryptoisfun, cynicalcake, steemingnaija, votehumanity, ljpaez, foways, christianolu, locikll, fanstaf, nolasco, neumannsalva, chunnorris, thuraaunghtet, kimchi-king, janine-ariane, drmake, tomatom, creatrixity, mrday, asonintrigue, juandvg, romanleopold, cosmophobia, juanhobos, kind-sir, call-me-howie, gatis-photo, sciencebox, ogsenti, vact, resteemer, jefpatat, poodai, akumar, m1alsan, adamzi, niko3d, ameliabartlett, elfranz, joelagbo, kookyan, muratkbesiroglu, thethor1122, technotroll, metama, byash, chrstnv, krathos, sthephany, mirzantorres, angelzam, patapa, derg, lagrangemit, riemman-stielmit, sergiotorres, tropicalgrey, jireneye, maikolp, carlosvls, amelisfer, andypalacios, scienceboard, jasb, juanchop, clement.poiret, vzlauniversity, karlab, masterkey1, michaelto, kiikoh, mrunderstood, synthtology, changevictory, matrixbinary, fclosamigos, plumesteemit, brandsteemit, parchazar, trickgame, jjsegovia, truelovemom, tecnosc, purplepaper, wonderfulfood, alpha-today, kaneko, anwenbaumeister, gangstayid, pes7md, dbzfan4awhile, gabrielatravels, bobsthinking, giddyupngo, maanabdullah, leomarylm, idkpdx, alexa.creates, galione, atheology, tiagoferezin, raghao, predict-crypto, chickenmeat, tuck-fheman, hendrikdegrote, the-eliot, blessing97, coloringiship, click3rs, ilovecryptopl, lola-carola, bitland, kenadis, joelgonz1982, bidbots, mountainwashere, fredrikaa, abigail-dantes, dysfunctional, lenin-mccarthy, esteliopadilla, ksolymosi, wisewoof, ertwro, churchboy, zeeshan003, lesshorrible, physics.benjamin, pearlumie, rival, imamalkimas, anonymous13, ugonma, supposer, akeelsingh, conficker, damzxyno, nikola.kalabic, knightbjj, thescubageek, wackou, jdc, wdoutjah, thomaskatan, m03kr1, gio6, landria, stayoutoftherz, michelios, iansart, abdulmath, sublimenonsense, massivevibration, happychild, jibril14, benleemusic, masaitv, eric-boucher, robertbira, crescendoofpeace, eroticabian, eurogee, kelos, sanderdieryck, laurentiu.negrea, steinz, orcheva, ulockblock, aamin, steepup, derbesserwisser, vanessahampton, aware007, torico, forestplane, vigna, ninyea, hillaryaa, delph-in-holland, williams-owb, cordeta, anarchojeweler, mindscapephotos, theunlimited, apteacher, lk666, kkbaardsen, honeysara, cooknbake, christianyocte, sunshinebear, bitmycoin, toby-l, burlarj, daydreaming, jaydih, gil96ve, pechichemena, jbrrd, divram, l0ki, geekorner, theodora.austria, markgritter, arcange, raphaelle, olasamuel, umair123behappy, romualdd, tibra, elliotyagami, alexdory, communityisyou, medicnet, rkrebel73235, cyprianj, mahima006,