[Math Talk #5] Math is not always intuitive! - Distribution of Sequence
math·@mathsolver·
0.000 HBD[Math Talk #5] Math is not always intuitive! - Distribution of Sequence
<center> <img src = "https://i.imgsafe.org/96/96dff23960.png" /> </center> # Distribution of Sequence - Weird Results ## 1. What is Equidistribution? From statistics, distribution is nothing but a probability mass function (for discrete random variables) or probability density function (for continuous random variables). For sequences, we use the following defnition. --- #### Definition. - [1] A sequence <img src="http://latex.codecogs.com/gif.latex?\left\{&space;a_n&space;\right\}" title="\left\{ a_n \right\}" align = "center"/> is said to be __equidistributed__ on non degenerate interval <img src="http://latex.codecogs.com/gif.latex?[x,&space;y]" title="[x, y]" align = "center"/> if for any subinterval <img src="http://latex.codecogs.com/gif.latex?[\alpha,&space;\beta]&space;\subset&space;[x,&space;y]" title="[\alpha, \beta] \subset [x, y]" align = "center"/>, we have <center> <img src="http://latex.codecogs.com/gif.latex?\lim_{N&space;\rightarrow&space;\infty}&space;\frac{\&hash;&space;\left\{&space;a_{n}&space;\in&space;[\alpha,&space;\beta]&space;:&space;1&space;\leq&space;n&space;\leq&space;N&space;\right\}}{N}&space;=&space;\frac{\beta&space;-&space;\alpha}{y&space;-&space;x}" title="\lim_{N \rightarrow \infty} \frac{\# \left\{ a_{n} \in [\alpha, \beta] : 1 \leq n \leq N \right\}}{N} = \frac{\beta - \alpha}{y - x}" /> </center> What it means is the following. Considering __more and more terms__ (<img src="http://latex.codecogs.com/gif.latex?N&space;\rightarrow&space;\infty" title="N \rightarrow \infty" />), the __ratio__ of the number of terms inside the subinterval <img src="http://latex.codecogs.com/gif.latex?[\alpha,&space;\beta]" title="[\alpha, \beta]" align = "center"/> to the total <img src="http://latex.codecogs.com/gif.latex?N" title="N" /> should __converge__ to the ratio of length of each subinterval vs total. --- The case when <img src="http://latex.codecogs.com/gif.latex?x&space;=&space;0,&space;y=&space;1" title="x = 0, y= 1" align= "center"/> is of particular interest, since <img src="http://latex.codecogs.com/gif.latex?[0,&space;1]" title="[0, 1]" align = "center"/> is the __unit interval__. Rewriting the definition, we can rewrite as follows. For <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\alpha_n&space;\right\}&space;\subset&space;[0,&space;1]" title="\left\{ \alpha_n \right\} \subset [0, 1]" align = "center"/> and <img src="http://latex.codecogs.com/gif.latex?[\alpha,&space;\beta]&space;\subset&space;[0,&space;1]," title="[\alpha, \beta] \subset [0, 1]," align= "center"/> equidistribution is equivalent to <center> <img src="http://latex.codecogs.com/gif.latex?\lim_{N&space;\rightarrow&space;\infty}&space;\frac{\&hash;&space;\left\{&space;a_n&space;\in&space;[\alpha&space;,\beta]:&space;1&space;\leq&space;n&space;\leq&space;N&space;\right\}}{N}&space;=&space;\beta&space;-&space;\alpha" title="\lim_{N \rightarrow \infty} \frac{\# \left\{ a_n \in [\alpha ,\beta]: 1 \leq n \leq N \right\}}{N} = \beta - \alpha" /> </center> ## 2. Weyl's Criterion ### 2-1. What is the problem? The definition is self-clear and intuitive. The proportion of terms inside the given subinterval should converge to subinterval's length as we consider more and more terms. However, __the problem is that__ Even if we are given a specific sequence (or furthermore closed form expression), __it is hard to analytically solve the equality__ <center> <img src="http://latex.codecogs.com/gif.latex?\alpha&space;\leq&space;a_n&space;\leq&space;\beta" title="\alpha \leq a_n \leq \beta" /> </center> __for all__ <img src="http://latex.codecogs.com/gif.latex?N" title="N" /> (or at least prove the convergence directly). ### 2-2. Weyl's Criterion - A Great Breakthrough <center> <img src = "https://i.imgsafe.org/96/96c8e44d0d.jpeg" height = "300" width = "300"/> </center> [2] In 1916, on his paper [<___On the distribution of numbers modulo 1___>](http://www.fuchs-braun.com/media/3ed54b58b68a224cffff80dffffffff1.pdf) - [3], German Mathematician [Hermann Weyl](https://en.wikipedia.org/wiki/Hermann_Weyl) proved the following ingenious criterion for determination of equidistribution of particular sequence. --- #### Weyl's Criterion. -[4] A sequence of real numbers <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\xi_n&space;\right\}" title="\left\{ \xi_n \right\} \subset [0, 1]" align = "center"/> is equidistributed modulo 1 __if and only if__ for all integers <img src="http://latex.codecogs.com/gif.latex?k&space;\neq&space;0" title="k \neq 0" align = "center"/>, we have <center> <img src="http://latex.codecogs.com/gif.latex?\lim_{N&space;\rightarrow&space;\infty}&space;\frac{1}{N}&space;\sum_{n=1}^{N}&space;e^{2\pi&space;i&space;k&space;\xi_n}&space;=&space;0" title="\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} = 0" /> </center> where <img src="http://latex.codecogs.com/gif.latex?i&space;=&space;\sqrt{-1}" title="i = \sqrt{-1}" align = "center"/> is the imaginary number, and modulo 1 implies the fractional part, <center> <img src="http://latex.codecogs.com/gif.latex?\langle&space;\xi_n&space;\rangle&space;=&space;\xi_n&space;-&space;\lfloor&space;\xi_n&space;\rfloor" title="\langle \xi_n \rangle = \xi_n - \lfloor \xi_n \rfloor" /> </center> --- The proof is not difficult (only uses elementary analysis including Riemann integrals), but lengthy enough (including some propositions and corollaries to be stated), so I will just post a [link](https://warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/resources/ma433/2014/weyl.pdf) - [5]. (Believe me it's not hard). What's important of this criterion is the following fact that we are gonna use. ### 2-3. Irrational numbers and Equidistribution - [6] Pick any __irrational__ number <img src="http://latex.codecogs.com/gif.latex?a&space;\in&space;\mathbb{R}" title="a \in \mathbb{R}" /> , and construct a sequence <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\langle&space;n&space;a&space;\rangle&space;\right\}" title="\left\{ \langle n a \rangle \right\}" align = "center"/> , where <center> <img src="http://latex.codecogs.com/gif.latex?\langle&space;na&space;\rangle&space;=&space;na&space;-&space;\lfloor&space;na&space;\rfloor" title="\langle na \rangle = na - \lfloor na \rfloor" /> </center> denotes the fractional part of <img src="http://latex.codecogs.com/gif.latex?na" title="na" /> . Then using <img src="http://latex.codecogs.com/gif.latex?\xi_n&space;=&space;na" title="\xi_n = na" align = "center"/> , the criterion gives <center> <img src="http://latex.codecogs.com/gif.latex?\begin{align*}&space;\left|&space;\sum_{n=1}^{N}&space;e^{2\pi&space;i&space;k&space;\xi_n}&space;\right|&space;&=&space;\left|&space;\sum_{n=1}^{N}&space;e^{2\pi&space;i&space;k&space;n&space;a}&space;\right|&space;\\&space;&=&space;\left|&space;\frac{e^{2\pi&space;i&space;k&space;a}&space;(&space;1&space;-&space;e^{2&space;\pi&space;i&space;N&space;a})}{1&space;-&space;e^{2&space;\pi&space;i&space;k&space;a}}&space;\right|\\&space;&\leq&space;\left|&space;\frac{&space;1&space;-&space;e^{2&space;\pi&space;i&space;N&space;a}}{1&space;-&space;e^{2&space;\pi&space;i&space;a}}&space;\right|&space;\leq&space;\frac{2}{\left|&space;1&space;-&space;e^{2&space;\pi&space;i&space;k&space;a}&space;\right|}&space;\end{align*}" title="\begin{align*} \left| \sum_{n=1}^{N} e^{2\pi i k \xi_n} \right| &= \left| \sum_{n=1}^{N} e^{2\pi i k n a} \right| \\ &= \left| \frac{e^{2\pi i k a} ( 1 - e^{2 \pi i N a})}{1 - e^{2 \pi i k a}} \right|\\ &\leq \left| \frac{ 1 - e^{2 \pi i N a}}{1 - e^{2 \pi i a}} \right| \leq \frac{2}{\left| 1 - e^{2 \pi i k a} \right|} \end{align*}" /> </center> so that <center> <img src="http://latex.codecogs.com/gif.latex?\lim_{N&space;\rightarrow&space;\infty}&space;\frac{1}{N}&space;\sum_{n=1}^{N}&space;e^{2\pi&space;i&space;k&space;\xi_n}&space;=&space;0" title="\lim_{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} e^{2\pi i k \xi_n} = 0" /> </center> because <img src="http://latex.codecogs.com/gif.latex?|1&space;-&space;e^{2\pi&space;i&space;k&space;a}|&space;\neq&space;0" title="|1 - e^{2\pi i k a}| \neq 0" align = "center"/> (<img src="http://latex.codecogs.com/gif.latex?a" title="a" /> is irrational!) and independent of <img src="http://latex.codecogs.com/gif.latex?N" title="N" /> . So we've showed that <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\langle&space;n&space;a&space;\rangle&space;\right\}" title="\left\{ \langle n a \rangle \right\}" align = "center"/> is equidistributed over <img src="http://latex.codecogs.com/gif.latex?[0,&space;1]" title="[0, 1]" align = "center"/> for any irrational number <img src="http://latex.codecogs.com/gif.latex?a" title="a" /> . ## 3. So where can we use this result? Take <img src="http://latex.codecogs.com/gif.latex?a&space;=&space;\frac{1}{2\pi}" title="a = \frac{1}{2\pi}" align = "center"/> . Then, <center> <img src="http://latex.codecogs.com/gif.latex?\langle&space;na&space;\rangle&space;=&space;\langle&space;\frac{n}{2\pi}&space;\rangle&space;=&space;\frac{n}{2\pi}&space;-&space;\lfloor&space;\frac{n}{2\pi}&space;\rfloor" title="\langle na \rangle = \langle \frac{n}{2\pi} \rangle = \frac{n}{2\pi} - \lfloor \frac{n}{2\pi} \rfloor" /> </center> is equidistributed over <img src="http://latex.codecogs.com/gif.latex?[0,&space;1]" title="[0, 1]" align = "center" /> . Now consider the new sequence <center> <img src="http://latex.codecogs.com/gif.latex?\psi_n&space;=&space;2\pi&space;\langle&space;n&space;a&space;\rangle&space;=&space;n&space;-&space;2\pi&space;\lfloor&space;\frac{n}{2\pi}&space;\rfloor" title="\psi_n = 2\pi \langle n a \rangle = n - 2\pi \lfloor \frac{n}{2\pi} \rfloor" /> </center> This is nothing but <img src="http://latex.codecogs.com/gif.latex?n&space;\mod&space;2\pi" title="n \mod 2\pi" /> . Since it is just __scaling of the equidistributed sequence__, from the definition, we can directly check the inequality holds for any subinterval of <img src="http://latex.codecogs.com/gif.latex?[0,&space;2\pi]" title="[0, 2\pi]" align = "center"/> . Hmm, what function does come to your mind if you loot at <img src="http://latex.codecogs.com/gif.latex?2\pi" title="2\pi" /> ? YES! the <img src="http://latex.codecogs.com/gif.latex?\sin" title="\sin" /> fucntion! ## 3-1. Distribution of sin(n) - [6] What is the actual distribution of <img src="http://latex.codecogs.com/gif.latex?\sin&space;n" title="\sin n" /> where <img src="http://latex.codecogs.com/gif.latex?n&space;=&space;1,&space;2,&space;...&space;\in&space;\mathbb{N}" title="n = 1, 2, ... \in \mathbb{N}" align = "center"/> ? Note that <img src="http://latex.codecogs.com/gif.latex?-1<&space;\sin&space;n&space;<1" title="-1< \sin n <1" align = "center"/> (it can not be -1 or 1). Here the distribution means the probability density function <img src="http://latex.codecogs.com/gif.latex?f(x)" title="f(x)" align = "center"/> over <img src="http://latex.codecogs.com/gif.latex?x&space;\in&space;(-1,&space;1)" title="x \in (-1, 1)" align = "center"/> such that <center> <img src="http://latex.codecogs.com/gif.latex?\int_{-1}^{1}&space;f(x)&space;dx&space;=&space;1" title="\int_{-1}^{1} f(x) dx = 1" /> </center> So the first thing we should do is to find a continuous random variable <img src="http://latex.codecogs.com/gif.latex?X&space;\in&space;(-1,&space;1)" title="X \in (-1, 1)" align = "center"/> . Summarizing the observations made above, 1. <img src="http://latex.codecogs.com/gif.latex?n&space;\mod&space;2\pi" title="n \mod 2\pi" /> is equidistribution on <img src="http://latex.codecogs.com/gif.latex?[0,&space;2\pi]" title="[0, 2\pi]" align = "center"/> 2. <img src="http://latex.codecogs.com/gif.latex?\sin" title="\sin" /> has fundamental period <img src="http://latex.codecogs.com/gif.latex?2\pi" title="2\pi" /> . So distribution (in statistical sense) of <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\sin&space;n&space;\right\}" title="\left\{ \sin n \right\}" align = "center"/> is equal to distribution of <img src="http://latex.codecogs.com/gif.latex?\sin&space;X" title="\sin X" /> where <center> <img src="http://latex.codecogs.com/gif.latex?X&space;\sim&space;Unif(-\pi/2,&space;\pi/2)" title="X \sim Unif(-1, 1)" align = "center" /> </center> because <img src="http://latex.codecogs.com/gif.latex?\sin&space;X" title="\sin X" /> runs over <img src="http://latex.codecogs.com/gif.latex?(-1,&space;1)" title="(-1, 1)" align= "center" /> and is invertible. Now if we denote PDF of <img src="http://latex.codecogs.com/gif.latex?\sin&space;X" title="\sin X" /> as <img src="http://latex.codecogs.com/gif.latex?g(x)" title="f(x)" align = "center"/> and PDF of <img src="http://latex.codecogs.com/gif.latex?X" title="X" /> as <img src="http://latex.codecogs.com/gif.latex?f(x)&space;=&space;1/2\pi" title="f(x) = 1/2" align = "center"/> (on interval <img src="http://latex.codecogs.com/gif.latex?(-1/2\pi,&space;1/2\pi)" title="(-1/2\pi, 1/2\pi)" align ="center"/> ), by transformation, <center> <img src="http://latex.codecogs.com/gif.latex?g(x)&space;=&space;\left|&space;\frac{d(\sin^{-1}x)}{dx}&space;\right|&space;f(\sin^{-1}(x))&space;=&space;\frac{1}{\pi&space;\sqrt{1-x^2}}&space;\&space;(x&space;\in&space;(-1,&space;1))" title="g(x) = \left| \frac{d(\sin^{-1}x)}{dx} \right| f(\sin^{-1}(x)) = \frac{1}{\pi \sqrt{1-x^2}} \ (x \in (-1, 1))" /> </center> ## 3-2. Visualization of the Result. Here is the MATLAB code for generating histogram of <img src="http://latex.codecogs.com/gif.latex?\sin&space;n" title="\sin n" /> where <img src="http://latex.codecogs.com/gif.latex?1&space;\leq&space;n&space;\leq&space;N" title="1 \leq n \leq N" align = "center"/> . ``` N = [10^4 10^5 10^6]; % Number of iteration %-------------------------------------------------------% for i = 1 : 1 : length(N) a = 1 : 1 : N(i); b = sin(a); figure; histogram(b); % Create histogram end ``` 1. N = 10000 <center> <img src= "https://i.imgsafe.org/96/9682a551d6.png" /> </center> 2. N = 100000 <center> <img src = "https://i.imgsafe.org/96/9682a54f81.png" /> </center> 3. N = 1000000 <center> <img src = "https://i.imgsafe.org/96/9682ee0792.png" /> </center> and the Probability density function we've obtained analytically ``` x = -1 : 0.01 : 1; y = zeros(length(x)); for i = 1 : 1 : length(x); y(i) = 1/ (pi * sqrt(1-x(i)^2)); end plot(x,y); ``` <center> <img src = "https://i.imgsafe.org/96/9691f4ebac.png" /> </center> It perfectly matches~! ### 3-3. Some Important Facts to denote There is a well known fact (and we've proved it on [the previous section using pigeonhole principle](https://steemit.com/math/@mathsolver/math-talk-3-pigeonhole-principle-and-its-usage) that <center> <img src="http://latex.codecogs.com/gif.latex?\left\{&space;m&space;+&space;na:&space;n,m&space;\in&space;\mathbb{Z}&space;\right\}" title="\left\{ m + na: n,m \in \mathbb{Z} \right\}" /> </center> is dense in <img src="http://latex.codecogs.com/gif.latex?\mathbb{R}" title="\mathbb{R}" /> for any irrational number <img src="http://latex.codecogs.com/gif.latex?a" title="a" /> . We can easily extend this result to show that <img src="http://latex.codecogs.com/gif.latex?\left\{&space;\sin&space;n&space;\right\}" title="\left\{ \sin n \right\}" align = "center"/> is __dense subset of__ <img src="http://latex.codecogs.com/gif.latex?[-1,&space;1]" title="[-1, 1]" align = "center"/> . Even if it is dense, the distribution is not uniform! There are far more values concentrated close to __extreme left and right__; <img src="http://latex.codecogs.com/gif.latex?-1,&space;1" title="-1, 1" align = "center" />. So this shows that __Elements in countable dense subset of closed interval do not need to be equidistributed!__ ## 4. Conclusion From the distribution of a sequence, we actually computed the distribution function of <img src="http://latex.codecogs.com/gif.latex?\sin&space;n" title="\sin n" /> viewed as a continuous sense. ## 5. Citations [1] https://warwick.ac.uk/fac/sci/maths/undergrad/ughandbook/resources/ma433/2014/weyl.pdf [2] https://en.wikipedia.org/wiki/Hermann_Weyl (image is used) [3] http://www.fuchs-braun.com/media/3ed54b58b68a224cffff80dffffffff1.pdf [4] http://web.maths.unsw.edu.au/~josefdick/preprints/KuipersNied_book.pdf , page 7 [5] http://web.maths.unsw.edu.au/~josefdick/preprints/KuipersNied_book.pdf , page 1 through 7 [6] http://web.maths.unsw.edu.au/~josefdick/preprints/KuipersNied_book.pdf , page 8 Example 2.1 and page 23 Exercise 2.7 __All the graphs and distributions are made by myself using MATLAB.__
👍 mathsolver, team, alexs1320, shidded, markgritter, aboutcoolscience, tibra, jayplayco, msolver, amansharma555, lucky222, mohism, alexdory, communityisyou, educatie, medicnet, sbw777, fabio2614, lucky2, steemstem, kevinwong, lemouth, mahdiyari, alexander.alexis, fancybrothers, howo, esteemguy, felixrodriguez, pratik27, tfcoates, eleonardo, egotheist, robotics101, tristan-muller, fejiro, sco, adetola, rharphelle, shoganaii, jlmol7, mittymartz, terrylovejoy, olajidekehinde, real2josh, kingabesh, ajpacheco1610, anyes2013, cryptoitaly, effofex, de-stem, yann85, ari16, michaelwrites, temitayo-pelumi, ibk-gabriel, purelyscience, osariemen, tombstone, arconite, helo, suesa, ludmila.kyriakou, joe.nobel, alexzicky, mountain.phil28, nurhayati, monie, jesusjacr, josephace135, flugschwein, doctor-cog-diss, biomimi, schlunior, testomilian, herbayomi, swapsteem, leftyobradovich, yeaho, sharelovenothate, justtryme90, lafona-miner, thevenusproject, borislavzlatanov, dna-polymerase, dna-ligase, dna-helicase, dna-primase, sliding-clamp, clamp-loader, dna-gyrase, rna-polymerase, ribosome, the-devil, foundation, lamouthe, himal, nitesh9, rachelsmantra, kerriknox, dna-replication, gra, rjbauer85, rockeynayak, curie, tantawi, howtostartablog, cryptokrieg, phogyan, gabox, birgitt, chimtivers96, meerkat, pacokam8, makrotheblack, sci-guy, amavi, laritheghost, emirfirlar, amirdesaingrafis, wstanley226, sethroot, dber, nitego, rasamuel, debbietiyan, vact, anna-mi, clweeks, peaceandwar, sireh, operahoser, beladro, niouton, soundworks, indy8phish, anikekirsten, qberryfarms, raymondspeaks, moksamol, getrichordie, thatsweeneyguy, sohailahmed, stahlberg, bavi, mahmudulhassan, hansmast, foways, mrday, kind-sir, gatis-photo, resteemer, locikll, fanstaf, nolasco, neumannsalva, tfame3865, jefpatat, poodai, drmake, niko3d, romanleopold, call-me-howie, clement.poiret, synthtology, hendrikdegrote, gangstayid, ameliabartlett, joelagbo, kookyan, muratkbesiroglu, metama, predict-crypto, anwenbaumeister, dbzfan4awhile, blessing97, gabrielatravels, giddyupngo, idkpdx, johngoad, tuck-fheman, lola-carola, bitland, the-eliot, tensor, coloringiship, click3rs, kenadis, joelgonz1982, mountainwashere, fredrikaa, abigail-dantes, dysfunctional, ksolymosi, ertwro, churchboy, lesshorrible, zeeshan003, physics.benjamin, pearlumie, rival, ugonma, akeelsingh, conficker, damzxyno, serialfiller, wdoutjah, wackou, brainpod, stayoutoftherz, abdulmath, massivevibration, happychild, jibril14, benleemusic, eric-boucher, robertbira, eurogee, kelos, torrey.blog, orcheva, aamin, steepup, vanessahampton, torico, mindscapephotos, genoner, lk666, honeysara, cooknbake, apteacher, daydreaming, burlarj, jaydih, jbrrd, utopian-io, roelandp,