Symmetry in Integrals: Even vs. Odd Integrals

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
·@mes·
0.000 HBD
Symmetry in Integrals: Even vs. Odd Integrals
https://youtu.be/NbwJOQnT1eM

In this video I go over the theorem on integrating symmetric functions which greatly simplifies integration. For even functions the integral from -a to a is just two times the integral from 0 to a. For odd functions, the integral from -a to a is simply zero. In this video I also provide a simple proof of this theorem while utilizing the substitution rule for integrals and properties of definite integrals.

---

Watch Video On:

- DTube: [https://d.tube/#!/v/mes/QmWGTkvBD7TaAkvaXBNaWQcdjefeQ5CVdnWdCRpoV7kGMu](https://d.tube/#!/v/mes/QmWGTkvBD7TaAkvaXBNaWQcdjefeQ5CVdnWdCRpoV7kGMu)
- BitChute: [https://www.bitchute.com/video/mzaI5s9UHjRy/](https://www.bitchute.com/video/mzaI5s9UHjRy/)
- YouTube: [https://youtu.be/NbwJOQnT1eM](https://youtu.be/NbwJOQnT1eM)

Download Video Notes: https://1drv.ms/b/s!As32ynv0LoaIg4F51YbelcJqdjDD2w?e=24lko7

---

# View Video Notes Below!

---

>Download these notes: Link is in video description.
>View these notes as an article: https://peakd.com/@mes
>Subscribe via email: http://mes.fm/subscribe
>Donate! :) https://mes.fm/donate 
>
>Reuse of my videos:
>- Feel free to make use of / re-upload / monetize my videos as long as you provide a link to the original video.
>
>Fight back against censorship:
>- Bookmark sites/channels/accounts and check periodically
>- Remember to always archive website pages in case they get deleted/changed.
>
>Join my private Discord chat room: https://mes.fm/chatroom
>
>Check out my Reddit and Voat math forums:
>- Reddit: https://reddit.com/r/AMAZINGMathStuff
>- Voat: https://voat.co/v/AMAZINGMathStuff
>
>Buy "Where Did The Towers Go?" by Dr. Judy Wood: https://mes.fm/judywoodbook
>Follow along my epic video series:
>- #MESScience: https://mes.fm/science-playlist
>- #MESExperiments: https://peakd.com/mesexperiments/@mes/list
>- #AntiGravity: https://peakd.com/antigravity/@mes/series
>-- See Part 6 for my Self Appointed PhD and #MESDuality breakthrough concept!
>- #FreeEnergy: https://mes.fm/freeenergy-playlist
>
>---
>
>NOTE #1: If you don't have time to watch this whole video:
>
>- Skip to the end for Summary and Conclusions (if available)
>- Play this video at a faster speed.
>-- TOP SECRET LIFE HACK: Your brain gets used to faster speed. (#Try2xSpeed)
>-- Try 4X+ speed by browser extensions or modifying source code.
>-- **Browser extension recommendation: https://mes.fm/videospeed-extension**
>-- See my tutorial to learn more: https://peakd.com/video/@mes/play-videos-at-faster-or-slower-speeds-on-any-website
>- Download and read video notes.
>- Read notes on the Hive blockchain #Hive
>- Watch the video in parts.
>
>NOTE #2: If video volume is too low at any part of the video:
>
>- Download this browser extension recommendation: https://mes.fm/volume-extension

---

# Symmetry in Integrals

![Symmetry in Integrals Examples.jpeg](https://files.peakd.com/file/peakd-hive/mes/re0wUiY4-Symmetry20in20Integrals20Examples.jpeg)

## Integrals of Symmetric Functions Theorem

Suppose f is continuous on [-a, a].

(a) If f is even, meaning f(-x) = f(x), then:

![image.png](https://files.peakd.com/file/peakd-hive/mes/OqcxkUx9-image.png)

(b) If f is odd, meaning f(-x) = - f(x), then:

![image.png](https://files.peakd.com/file/peakd-hive/mes/iZbdoKM2-image.png)

**Proof:**

![image.png](https://files.peakd.com/file/peakd-hive/mes/eDfFz48l-image.png)

![image.png](https://files.peakd.com/file/peakd-hive/mes/VTUdvmOZ-image.png)

![image.png](https://files.peakd.com/file/peakd-hive/mes/tGewgocT-image.png)

![image.png](https://files.peakd.com/file/peakd-hive/mes/EHQutdKn-image.png)
👍 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,