DISTANCE BETWEEN IN-CENTRE AND CIR-CUM-CENTRE.

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
Β·@meta007Β·
0.000 HBD
DISTANCE BETWEEN IN-CENTRE AND CIR-CUM-CENTRE.
Hello math bugs(🐞) & hivers(🐝)
I hope you are strong and stout and doing well.

Today the question is finding **distance between In-centre and Cir-cum-centre**.Check the following the following figure and try to find out the solution.You need to every inch and out of In-circle and cir-cum-circle and their relation to solve it.
![](https://images.ecency.com/DQmUs19xtKusoaBWMZwt8kM9UEwywK6Xy2YG6sKcLksNE1d/img_0.6447414509745055.jpg)

**The distance between two above mention centres represents by :**d = √(R²-2rR) Where **R** represents Cir-Cum-Radius and **r** represents In-Radius.
**It is time to prove.It may be quite complicated but give it a try.**

**Need to know three things:**
πŸ“―When the line joining In-centre and the vertices is produced to Circumference of the Cir-cum-circle, what we get check below:![](https://images.ecency.com/DQmeeJkuRBeELJ1QDtzfb2F2qGtmoMam99tqvUJDqoWaB5X/img_0.12278247016773434.jpg)When we try proving something in geometry, we should know related proven staff.So I am not proving it here.πŸ€ͺ I'll keep it for some other day otherwise it will be very irritating to get all the things at the same time.

πŸ“―πŸ“―As **AI** in the figure is angle bisector so angle A get divided into **a** And thus angle B to **b** each.Again angle BIQ becomes **(a+b)** as external angle of a triangle is equals to sum of internal opposite angle of a βˆ†.So we have **BQ=IQ.Check details below:**![](https://images.ecency.com/DQmV7dEbbeZoDfqKGt2vx8xed9F5oJh53PL8KFApHfwqVsp/img_0.6761916327234803.jpg)
πŸ“―πŸ“―πŸ“―The two pink and red triangles are similiar because they have two equal angles.Find it in the following figure:![](https://images.ecency.com/DQmTgeYb9iBVupXWog5jC3zh72aNahDW3FTmcd7JsfT9N7Q/img_0.1999752604770764.jpg)

**So what we get is in the following figure and also coming to the proof.Bang! Bang! here it is:**![](https://images.ecency.com/DQmfKkAcE7sun1vMzeoUm6PGqLXKc4zzR13Amb9zTW3iQy2/img_0.5451898391407045.jpg)**We can proof the formulla using sine rule and cosine rule also but before that I had to prove them also.If used that method it would be more complicated. So I decided use geometry.**

The In-radius is perpendicular drawn form the centre to the sides of the triangle and the Cir-Cum-Radius is distance between vertices and Cir-cum-centre. So the solution is given below.![](https://images.ecency.com/DQmQ5F4McUVL4ovKjaMRBhqD34J5XG3SK5vs8SrEKMwERmm/img_0.9712429412163125.jpg)

**The construction may be in appropriate because it is done without taking measurement (what eye sight tells).**

βœ… Check previous related post below:

[In-Centre](https://ecency.com/hive-163521/@meta007/knowing-in-circle)

[Cir-Cum-Cirlce](https://ecency.com/hive-163521/@meta007/knowing-cir-cum-circle)

I hope you enjoyed giving a little bit trouble to your brain.Thank you so much for visiting.

Have a great day 

All is well

Regards: @meta007
πŸ‘ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,