10-02-2025 - Analytical Geometry - System of Linear Equations [EN]-[IT]

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
·@stefano.massari·
0.000 HBD
10-02-2025 - Analytical Geometry - System of Linear Equations [EN]-[IT]
![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23xL5KMVJD1tXt2ZPPoAhh2ikf5ZNsSAGDxCkFgTiXfHK8z8thYxv5LVNkaaGCQao2drb.png)





---

*~~~ La versione in italiano inizia subito dopo la versione in inglese ~~~*

---


**ENGLISH**
**10-02-2025 - Analytical Geometry - System of Linear Equations [EN]-[IT]**
With this post I would like to give a brief instruction about the topic mentioned in the subject
(code notes: X_75)

***System of Linear Equations ***
One of the things that can be done through the study of matrices is to understand the existence of solutions of systems of linear equations.
NOTE: Linear equations are equations in which the unknown (or unknowns) appear with exponent 1 and there are no terms with products between unknowns or more complex functions such as powers, roots or logarithms.

Here is the general form, that is a linear equation in a single variable (x)

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcPAjrkSVtKvnTJSTkjspF67Wf21RJjV1LoBegF1NXHVcoa7DS8YaXE7wTUYnErqHa7.png)

Where:
-a and b are real numbers different from 0
-x is the unknown to be found

**Example**

Here we try to make an example trying to understand if the proposed system has a solution.
*System of linear equations*

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tSym8QGUFvhGiwBjXDoXZFcyaPoUg96cERe4SbruLpFxwYNHH4VskPL38DQHTxmovz7.png)

The incomplete matrix associated with the system is

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tmm5sZJGGWcEXoayuFoKPGAPYMvmcDXTYGUvZyzUTtGx42xsGfELxbLh9GWyHVXm38Q.png)

It derives from the following extraction

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tSyz38G2f3Y4h7STG1WsyJDC3GKtejtD7RsifoRKJBsdqFM5khgkZd7JBeZZaSrEEjL.png)

While the complete matrix associated with the system is

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcNeS8YXHdrebPdYXrxcEZU57zrH3AW96dfig7nD96yVrmJEabY8cZuxRc4CjUuP6Ns.png)

Which derives from the following extractions

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tHbKfDNhQVoARxtgE5ZBUqbBo32T1DGTqeEQipttCt8ARPKTdxMnGFhSemvwfifZCs7.png)

Now let's calculate the rank of the incomplete matrix A that we reproduce below:
![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tmm5sZJGGWcEXoayuFoKPGAPYMvmcDXTYGUvZyzUTtGx42xsGfELxbLh9GWyHVXm38Q.png)

The calculation of the determinant of the 2x2 matrix is following:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23w3EneiabBEQiyeHVcfCMTLFPkzpy3ckjSvF8aJLwa34YmcP9ZFoh91Zh4TqyCRKDw9H.png)

We can now come to the following conclusion. Since the determinant of the matrix A is different from zero,,, the rank of the incomplete matrix A is 2

Now let's move on to the calculation of the rank of the complete matrix 𝐴∣𝐵
The complete matrix 𝐴∣𝐵 was the following

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcNeS8YXHdrebPdYXrxcEZU57zrH3AW96dfig7nD96yVrmJEabY8cZuxRc4CjUuP6Ns.png)

Let's reduce the complete matrix to the reduced form a scale:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23uRLJc4suVjrsqaUvf2doYtFQXWG4z2AVgXkpsNcGvofcvJtZzpDxFa934eSboQLEt5A.png)

scale reduced form

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/Eo6SF51degAgKaBqLNNs4pni3CA7zhj8y3uJDg471XmgthTVL2wd7voAtJWPA1gkN9A.png)

From here we deduce that there are two non-zero rows, the rank of the complete matrix
𝐴∣𝐵 is 2.

Now if ri and rc indicate respectively the rank of the incomplete matrix and the rank of the complete matrix associated with the system we can state the following:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23uFwHvSbYgmqXSq3sv5U2R1viimGDSXfzqfQqn3qeMJWru3MGR9W8mUxwwddJPAK51Da.png)

ri=2 and rc=2

*RESULT*
Since ri = 2 and rc = 2, the system has a solution.

***Conclusions***
Through matrices we can study the existence of solutions of systems of linear equations

***Question***
Have you ever done similar exercises to discover the existence of solutions in systems of linear equations?





---

https://images.hive.blog/1536x0/https://files.peakd.com/file/peakd-hive/green77/gGQutTRs-hive-spacer.png

---


**[ITALIAN]**
**10-02-2025 - Geometria analitica - Sistema di equazioni lineari [EN]-[IT]**
Con questo post vorrei dare una breve istruzione a riguardo dell’argomento citato in oggetto
(code notes: X_75)

***Sistema di equazioni lineari ***
Una delle cose che si possono fare attraverso lo studio delle matrici è capire l’esistenza delle soluzioni di sistemi di equazioni lineari.
NOTA: Le equazioni lineari sono equazioni in cui l'incognita (o le incognite) compaiono con esponente 1 e non sono presenti termini con prodotti tra incognite o funzioni più complesse come potenze, radici o logaritmi.

Qui di seguito la forma generale, cioè un'equazione lineare in una sola variabile (x)


![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcPAjrkSVtKvnTJSTkjspF67Wf21RJjV1LoBegF1NXHVcoa7DS8YaXE7wTUYnErqHa7.png)

Dove:
-a e b sono numeri reali diversi da 0
-x è l'incognita da trovare

**Esempio**

Qui di seguito proviamo a fare un esempio cercando di capire se il sistema proposto ha soluzione.
*Sistema di equazioni lineari*

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tSym8QGUFvhGiwBjXDoXZFcyaPoUg96cERe4SbruLpFxwYNHH4VskPL38DQHTxmovz7.png)

La matrice incompleta associata al sistema è

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tmm5sZJGGWcEXoayuFoKPGAPYMvmcDXTYGUvZyzUTtGx42xsGfELxbLh9GWyHVXm38Q.png)

Deriva dalla seguente estrazione

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tSyz38G2f3Y4h7STG1WsyJDC3GKtejtD7RsifoRKJBsdqFM5khgkZd7JBeZZaSrEEjL.png)


Mentre la matrice completa associata al sistema è

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcNeS8YXHdrebPdYXrxcEZU57zrH3AW96dfig7nD96yVrmJEabY8cZuxRc4CjUuP6Ns.png)

Che deriva dalle seguenti estrazioni

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tHbKfDNhQVoARxtgE5ZBUqbBo32T1DGTqeEQipttCt8ARPKTdxMnGFhSemvwfifZCs7.png)

Ora calcoliamo il rango della matrice incompleta A che riproponiamo qui sotto:
![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tmm5sZJGGWcEXoayuFoKPGAPYMvmcDXTYGUvZyzUTtGx42xsGfELxbLh9GWyHVXm38Q.png)

Il calcolo del determinate della matrice 2x2 è la seguente:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23w3EneiabBEQiyeHVcfCMTLFPkzpy3ckjSvF8aJLwa34YmcP9ZFoh91Zh4TqyCRKDw9H.png)

Possiamo ora arrivare alla seguente conclusione. Siccome il determinante della matrice A è diverso da zero,,, il rango della matrice incompleta A è 2

Ora passiamo al calcolo del rango della matrice completa 𝐴∣𝐵
La matrice completa 𝐴∣𝐵 era la seguente

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23tcNeS8YXHdrebPdYXrxcEZU57zrH3AW96dfig7nD96yVrmJEabY8cZuxRc4CjUuP6Ns.png)

Riduciamo la matrice completa alla forma ridotta a scala:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23uRLJc4suVjrsqaUvf2doYtFQXWG4z2AVgXkpsNcGvofcvJtZzpDxFa934eSboQLEt5A.png)

forma ridotta a scala

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/Eo6SF51degAgKaBqLNNs4pni3CA7zhj8y3uJDg471XmgthTVL2wd7voAtJWPA1gkN9A.png)

Da qui deduciamo che ci sono due righe non nulle, il rango della matrice completa 
𝐴∣𝐵 è 2.

Ora se ri ed rc indicano rispettivamente il rango della matrice incompleta e il rango della matrice completa associati al sistema possiamo affermare quanto segue:

![image.png](https://files.peakd.com/file/peakd-hive/stefano.massari/23uFwHvSbYgmqXSq3sv5U2R1viimGDSXfzqfQqn3qeMJWru3MGR9W8mUxwwddJPAK51Da.png)

ri=2 e rc=2

*RISULTATO*
Siccome ri = 2 ed rc = 2, il sistema ha soluzione.

***Conclusioni***
Attraverso le matrici si può studiare l’esistenza delle soluzioni di sistemi di equazioni lineari

***Domanda***
Avete mai fatto degli esercizi simili per scoprire l'esistenza di soluzioni in sistemi di equazioni lineari?

**THE END**




👍 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,