HiveSense - have you heard about new AI search in Hive?

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
·@thebeedevs·
0.000 HBD
HiveSense - have you heard about new AI search in Hive?
We all know what the Internet is for: to share cat photos.
But how can you find all posts about cats on Hive? They might be hidden in different communities and their stories could have been posted long ago.
To find cats - or any other topic that might be buried somewhere on Hive - you should try out our new app HiveSense.

![AI generated sweet little black kitten](https://images.hive.blog/DQmXkdekRDkS2uX3MomqSeGF7qbcK4zUsYefqtzzL2rAym9/pussy.png) 

### How to find `sweet little black kitten`?
Go to https://blog.dev.openhive.network/trending - this is a Denser application (please note it is still not fully production ready), but you can already search using HiveSense.
Try entering: `sweet little black kitten`. In the screenshot below, you can see the results. They come from different communities and times, but all posts have something in common - black kittens. 

 ![lList of posts](https://images.hive.blog/DQmbXB5EuWnDiEh6Wu2xtMkGxCcpQi2WX9Tz4Vp7vSyoWn4/listofposts.png) 

If you go to the post details, you can see related posts on the left-hand side.

![Search result - sweet kitten](https://images.hive.blog/DQmVkpvrVXCUCjfyWT95BakqF3dFvVbpeFw5X6QE9481MG2/sweetkitten.png) 

### What is HiveSense?
HiveSense is an application that allows for searching for posts based on meaning, not just keywords.
It is a [HAF-based application](https://gitlab.syncad.com/hive/haf) that uses  pre-trained LLMs running via Ollama.
It connects to Hive's structured database (Hivemind), processes posts, computes embeddings for each of them and stores results in vector tables. 
Embeddings (vector representations of posts) are calculated from root posts that contain more than 50 words. Before the embeddings are calculated, all links and tags are removed from the post. If the post is long, not entire is used for embeddings calculation - the post is divided into smaller parts - 1000 words per chunk with 100 overlap with previous chunk. Only the first three chunks are used. 
HiveSens allows you to search for posts, for posts content related to an existing post or for authors who contribute to specific topics or themes.
There are three available APIs:
- search for posts similar to a given pattern (/similarposts)
- search for posts similar to a given Hive post (/similarpostbypost)
- search for authors related to a given pattern (/thematiccontributors) - note that this one is not available in the Denser interface.

The sources with technical description you can find here: https://gitlab.syncad.com/hive/hivesense
The swagger with detail description: https://api.dev.openhive.network/hivesense-swagger/

### Try it and tell us what you think!



👍 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,