Research diaries #8: Weakening differentiability

View this thread on: d.buzz | hive.blog | peakd.com | ecency.com
·@mathowl·
0.000 HBD
Research diaries #8: Weakening differentiability
*In high school we all learned about how to compute the derivative. Here we will look at what it means for a function to be differentiable and how to weaken it.*

A derivative of a function at a point gives the slope of the tangent at that point. See the pretty figure below.

<center>
![image.png](https://files.peakd.com/file/peakd-hive/mathowl/23t8EsVYvr3ZT1BGFatFAiiwRWMkagenH2U8m4PqDUVnssAiz1Sbj4GpudL61qBkJFWS7.png)
*The blue line we can express as ax+b where a,b are two constants determined by making the line tangent to the black curve. The derivative is given by a*
</center>

To make it more applied you can think of this graph as a function of position and time. The derivative at a give time then correspond to the speed at that time. Is a derivative always well-defined? No, Let's give an example: 

<center>
![image.png](https://files.peakd.com/file/peakd-hive/mathowl/23tcQixRoZaDtjsJAiHTmBUp6WYgr7pUN6Dofq2nYNByuDbWXA9Uz1xTtFsnAkbEHj92h.png)
*The black curve is dented. It has a sharp point at the red spot. If we do the previous procedure to find the derivative the derivative could have 2 different values*
</center>


We see that at the point we want to compute the derivative we could draw 2 different lines that are tangent in two different ways: one approaches from the left and the other approaches from the right. So the derivative is not well defined because the slope can have 2 different values. We call this function not *smooth*. However, these 2 lines still give us information about how steep the function is. This weaker type differentiability is called [Lipschitz continuity](https://en.wikipedia.org/wiki/Lipschitz_continuity). I will skip the mathematical formalities and you can keep your intuitive understanding.

So what do functions look like that are not Lipschitz continuous. A simple example is
<center>
![image.png](https://files.peakd.com/file/peakd-hive/mathowl/Enz4SrcSSE8DjT5jdDQx7pfCkoPAyEJvc4KBUAfz42xEURBQSPaNxDPeDGfkYK7cRLr.png)
*A discontinuous curve*
</center>
The disconintuity makes it so that I cannot draw this double cone shape as before. 

In the domain of mathematical analysis there is a large field which considers weak versions of properties we considered in a basic calculus course. By weakening these properties we can somehow obtain better results because the conditions are not that severe. Specifically, in the field of differential equations this is a common approach to find solutions of complicated equations which only exist in some weak sense. Maybe that is a nice topic for a future post.


<center>
*All images made by me ^^*
</center>

<center>
**Cat tax**

![090d6a6c97b5b801b7b736969317885.jpg](https://files.peakd.com/file/peakd-hive/mathowl/23uFWDBMS5cDKGce8WDWrq2sgMDuo5CxmvXHzc6zY8PiYAmC6Fbqgo6GfuzKsGjBFN8Sb.jpg)


</center>
👍 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,